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1.Charge Flow at High Energy

e Why Charge Flow is Different than Energy Flow

— Both are stable under collinear splittings and recombination, but
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— But charge has an instability under soft radiation (starting at a?.)
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e Nevertheless, soft fermions “stay soft” in perturbation theory up to calculable corrections
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e It makes sense to use perturbation theory to organize flavor flow — one constituent
determines the pion



e There have been great advances in the use of energy flow concepts to organize jet
evolution and isolate observables that are sensitive to the perturbative-nonperturbative
transition.

(L. Dixon, I. Moult, H.X. Zhu, 1905.01310, Phys. Rev. D 100 and talk by lan Moult at
this workshop.)

e It is also possible to construct jet flavor definitions with well-defined evolution.
(A. Banfi, G. Salam, G. Zanderighi, EJP (2006) ...S. Caletti, A. Larkoski, S. Marzani,
D. Reichelt, 2205.01117)

e Here, we will not focus on IR safety, but approach the connection of nonperturbative
and perturbative pQCD from a more exclusive direction.

e Perhaps contemporary and prospective detectors (as for EIC) have potential to use flavor
flow as a probe of hadronization.



e If we didn’t already know it, could we “discover”’ a string-based model of hadronization?

e To this end, propose an observable that is sensitive to hadronization through charge or
flavor correlations, linked to the particles with the highest energies in a jet.

— Consider jets in which the leading particle (L) and next-to-leading (NL) are both
pions. Comment: This 1s for convenience only, because it makes the counting simpler.

— If the charges of these pions are random (or if L is fixed and NL is random) then for
those events where both L and NL pions are charged,
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where CC indicates opposite charges, CC, same charge.

— Now consider an “alternating” picture: perturbative shower gives qj, followed by q]'\,L,
which form pions by sharing a soft pair:

qr + gNnL — qr + (qs + QS) +_qNL — 7"'(qLa qs) + 77(‘187 qNL) (2>
Then we get
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and all pairs of L and NL charged pions have opposite charges.



— Suppose every event results from one of these two processes, with no interference.
If a is the percentage of “alternating” events and 1 — a of “random” events
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In this (classical) picture a measurement of r,s, is a measurement of the fraction
of hadronizations that are “string-like”, energetic quark and antiquark sharing a soft

pair. This is surely too simple, but this measurement has information.

—|—a) = —a. (4)

— Naively, we expect a ~ 0.5, if the shower gives L/NL quarks/antiquarks indepen-
dently.

— Measurements of r can be made differentially in fractions z; and zx in a jet, and in
terms of a variety of “transverse” kinematic variables: relative transverse momentum,
pair invariant mass, pair formation time, etc, including polarization where applicable.
These can serve as benchmarks for a future theory of hadronization.



2. Intrajet Leading-Particle Correlations

e We define an asymmetry:
dahlhz/dX - dghlh_z/dX

X) = |
re(X) Ao /X + do, +-/dX

Inclusive or differential various kinematic variables X = firm, k7.

e The L-NL kinematics:

z =Py /(Py *PL)
P, = (1-2)P

— 4 PNL = ZP
4 — P L

Formation time = [22(1-2) P] / Kperp?




e Applied to the population of MCEG events:
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e For the full set of events,

— z = pni/(pL + pNL) is peaked near 0.5.
— Relative k, peaked at below 0.5 GeV with exponential falloff.
— 7. is nonzero, remarkably independent of (Q and jet pr.

— Similar, but not identical in Herwig, Phythia.

ea ~ —0.5, for pions <> *“alternating” half the time — close to dominant for kaons,
protons.



e 7. as a function of formation time
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e Signs of three regions.

and transverse momentum
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e Smaller |r.| for small formation time < large k, .



e Mixed-flavor combinations have further constraints
e Example: Quark content of K-Pi.

e in DIS, start with leading u or d quark and start with energetic s or 5 in the partonic
shower. Try to hadronize by creating a pair.

—u+s—nt+ K = (u,d) + (s, u)
—u+35—=nt+ Kt = (u,d) + (5,u)
—d+s—>n +K = (d,u)+ (s,u)
—d+35—> 7 + K" = (d,u) + (5,u) + Only here do sea quarks make a pair
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3. Interjet Leading-Particle Correlations

e Fragmentation and “universality”
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The correlations built into 67,4 are filtered by Dy, /. ® Dy, /q. To the extent these are
known, there is a prediction for nonzero correlations in the factorized cross section

How “universal” are fragmentation functions?
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e Schematically, for ete™ annihilation, opposite-jet r.. Denoting C = 4 and C = F:

Tete— (Zl, 22) —

2C=+ 21p=f,f [&e+e_—>F13’ ® D?TC/F ® DTI'C/F - &e+e——>FF X Dwa/F X DWC_’/F]

Ya=t Lp=f,f [Oete-srF ® Drc/p @ Drcjp + Gete——rF © Doc/p © Doc )l

e Similarly, for DIS with two jets (O(ay))

”I“DIS(Zla Zz) =

2C=4 LF=f,f [&e_p—>Fg ® DTFC/F X Dﬂ-c/g - a.e_p—>Fg X DT{'C/F ® Dﬂ-é/g]
Ya=+ LF=f,f [&e_p—>Fg X Dﬂ-C/F X Dﬂ'c/g + a-e_p—>Fg ® Dﬂ'C/F ® Dﬂ'é/g]
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e The inclusive asymmetry

e Feature of gluon jets

e Ensures that

Ncec — Nee
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inclusive __
T c =
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e A feature interited by any gluon jets
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e We should be able to investigate the transition between factorized and coherent flavor
flow using jet substructure methods.

e For example, soft drop. Correlations between leading particles in specified “splittings”.

e Can investigate in archived data for inclusive sum over charged particles.
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e When an early split contains pny,, the correlation 7. is stronger than for the inclusive data
set. An intriguing result, given that the inspiration for the first splitting is wide-angle
gluon radiation.
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Summary/QOurlook

e Flow of charge in pQCD

e Intrajet correlation 7,

e Interjet/fragmentation correlations

e Conjecture that the transition between these two regimes will shed light on hadronization.

e Some interesting results from event generators, like r. for pions, kaons, protons, and
pi-K correlations.

e The effect is present in preliminary analysis of H1 data involving subjets.

e Experimental results are possible from existing facilities, from Belle to LHC, and for the
EIC, with these and other observables.
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